A.D.M COLLEGE FOR WOMEN (AUTONOMOUS),

(Nationally Re-accredited with 'A' Grade by NAAC- 3rd Cycle)

NAGAPATTINAM- 611 001

PG & RESEARCH DEPARTMENT OF CHEMISTRY

(For the candidates admitted from the academic year 2021-2022)

B.Sc., CHEMISTRY

SYLLABUS

2021-2024

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

UG Programme - B.Sc Chemistry

(For the candidates admitted from 2021 – 2022 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

22220 1120050 220102					
K1 – Acquire/Remember	K2 – Understanding	K3 – Apply	K4 – Analyze	K5 – Evaluate	K6 – Create

1. Part I, II and III

Theory (External + Internal = 75 + 25 = 100 marks)

External/Internal						
Knowledge Level	Section	Marks	Hrs.	Total	Passing Mark	
K1-K3	A (Answer all)	$10 \times 2 = 20$				
K3-K6	B (Either or pattern)	$5 \times 5 = 25$	3	75	30	
K3-K6	C (Answer 3 out of 5)	$3 \times 10 = 30$				

PG AND RESEARCH DEPARTMENT OF CHEMISTRY (For the candidates admitted from 2021 – 2024)

B.Sc. CHEMISTRY

Programme Educational Objectives (PEO)

PEO 1	To develop the skill in problem solving, critical thinking and enhance the
	knowledge in chemistry.
PEO 2	To provide the students an in-depth understanding of the basic concepts of
	chemical sciences.
PEO 3	To provide a detailed knowledge of terms, concept, methodologies, principles and
	experimental techniques involved in various fields of chemistry.
PEO 4	To prepare the students to pursue higher studies and to develop sustainable
	innovative solutions for the nation.
PEO 5	To inculcate the scientific temperament in the students.

Programme Outcomes (PO) UG

On completion of the course the learner will be able

PO 1	To develop interest in the study of chemistry as a discipline.			
PO 2	To appreciate the achievements in chemistry and to know the role of chemistry in			
	nature and in society.			
PO 3	To be familiarized with the emerging areas of chemistry and their applications in			
	various spheres of chemical sciences and to appraise the students of its relevance in			
	future studies.			
PO4	To develop skills in proper handling of apparatus and chemicals.			
PO 5 To be exposed to the different processes used in industries and their applications.				

Programme Specific Outcomes (PSO) B.Sc

On completion of the course the learner will be able

PSO 1	To gain knowledge of chemistry through theory and practical's.						
PSO 2	The programme provides backbone of Physical, Inorganic, Organic and						
	Analytical Chemistry.						
PSO 3	Positive approach towards Environment from the chemistry perspective.						
PSO 4	Entrepreneurial skills are developed in students so as to make them start their						
	own Industries / Business in core chemistry fields.						
PSO 5	To explain nomenclature, stereochemistry, structures, reactivity and mechanism						
	of the chemical reaction						

.

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

COURSE STRUCTURE OF UG PROGRAMME -B.Sc CHEMISTRY

Part	Title of the part	No. of Papers	Hours	Credit
I	LC- Language Course	4	24	12
II	ELC – English Language Course	4	24	12
III	CC- Core Course	13	72	65
	AC –Allied Course	6	28	18
	MBE - Major Based Elective	3	15	15
IV	NME - Non- Major Elective	2	4	4
	SBE - Skill Based Elective	3	6	6
	SSD – Soft Skill Development	1	2	2
V	ES - Environmental Studies	1	2	2
	VE - Value Education	1	2	2
	EA - Extension Activities	0	0	1
	GS - Gender Studies	1	1	1
	Total	39	180	140

* Extra Credit Courses:

• Semester I –Food & Nutrition -I

• Semester II- Food & Nutrition - II

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM PG & RESEARCH DEPARTMENT OF CHEMISTRY B.Sc., CHEMISTRY

Course Structure under CBCS

(For the candidates admitted from the academic year 2021-2022 onwards)

			(For the candidates admitted from the academi	Ins.	21 2022		Marks		(F) 4 1
Sem	Part	Course Code	Course	Hrs / week	Credit	Exam Hours	CIA	SE	Total Marks
	I	LCTA	LC- Language Course – I Tamil -I	6	3	3	25	75	100
	II	LCEA	ELC- Language English Course- I English I	6	3	3	25	75	100
		QUA	CC- Core Course -I General Chemistry I	6	6	3	25	75	100
I		QUBY	CP- Core Practical-I Volumetric Analysis (P)	3	-	-	-	-	-
	III	MUA1/ ZUA1	AC- First Allied Course- I Maths I / Zoology I	4	3	3	25	75	100
		MUA2/ ZUA2Y	AC- First Allied Course- II Maths II / Zoology II (P)	3	-	-	-	-	-
	IV	VE	Value Education	2	2	3	25	75	100
			Total	30	17	-	-	-	500
	I	LCTB	LC- Language Course –II Tamil II	6	3	3	25	75	75 100 75 100 75 100 75 100 - 500 75 100 75 100 75 100 75 100 75 100 75 100
II	II	LCEB	ELC- Language English Course- II English II	6	3	3	25	75	100
	III	QUBY	CP -Core Practical-I Volumetric Analysis (P)	3	3	3	40	60	100
		QUC	CC- Core Course –II General Chemistry II	6	6	3	25	75	100
		MUA2/ ZUA2Y	AC- First Allied Course- II Maths II / Zoology II (P)	3	3	3	25/ 40	75/ 60	100
		MUA3/ ZUA3	AC- First Allied Course- III Maths III / Zoology III	4	3	3	25	75	100
	IV	ES	Environmental Studies	2	2	3	25	75	100
			Total	30	23	-	-		700

		LCTC	I.C. Languaga Course III						
	I	LCTC	LC- Language Course – III Tamil III	6	3	3	25	75	100
	II	LCEC	ELC- Language English Course- III English III	6	3	3	25	75	100
Ш		QUD	CC- Core Course -III General Chemistry III	6	6	3	25	75	100
		QUEY	CP-Core Practical-II Qualitative analysis (P)	3	-	-	-	-	-
	III	PUA1	AC- Second Allied Course-I Physics I	4	4	3	25	75	100
		PUA2Y	AC- Second Allied Course-II Physics II (P)	3	-	-	-	-	-
	IV	QUE1	NME- Non Major Elective I Chemistry of Consumer Products / Chemistry in Every Day Life - I	2	2	3	25	75	100
			30	18	-	-	_	500	
	I	LCTD	LC Language Course – IV Tamil IV	6	3	3	25	75	100
	II	LCED	ELC Language English Course- IV English IV	6	3	3	25	75	100
IV		QUEY	English IV 6 3 3 25 75 100	100					
		QUF	CC Core Course-IV General Chemistry IV	5	4	3	25	75	100
	III	PUA2Y	AC Second Allied Course-II (Physics II (P)	3	3	3	40	60	100
		PUA3	AC Second Allied Course-III Physics III	4	2	3	25	75	100
	IV	QUS1	SBE Skill Based Elective I- Pharmaceutical Chemistry / Forensic Science	2	2	3	25	75	100
		QUE2	NME Non Major Elective II Food Science / Chemistry in Every Day Life - II	2	2	3	25	75	100
			Total	30	22	-	-	-	800
•	•			•	•	•			

		QUG	CC -Core Course-V Inorganic Chemistry I	5	5	3	25	75	100
	III								
		QUH	CC -Core Course-VI Organic Chemistry I	5	5	3	25	75	100
V		QUI	CC- Core Course-VII Physical Chemistry I	6	6	3	25	75	100
		QUJY	CP- Core Practical –III Physical Chemistry (P)	3	3	3	40	60	100
		QUE3	MBE- Major Based Elective Analytical Chemistry / Material and Nano Technology	5	5	3	25	75	100
	IV	QUS2	SBE- Skill Based Elective II Applied Chemistry / Industrial Chemistry	2	2	3	25	75	100
		QUS3	SBE- Skill Based Elective III Polymer Chemistry / Green Chemistry	2	2	3	25	75	100
		SSD	Soft Skill Development	2	2	3	25	75	100
			Total	30	30	-	-	-	800
		QUK	CC- Core Course-VIII - Organic Chemistry II	6	6	3	25	75	100
		QUL	CC -Core Course-IX - Physical Chemistry II	6	6	3	25	75	100
VI	III	QUMY	CP- Core Practical –IV- Gravimetric and Organic Analysis (P)	6	6	6	25 75 25 75 25 75	100	
		QUE4	MBE- Major Based Elective – II - Nuclear, Industrial and Metallic State / Petroleum Chemistry	6	5	3	25	75	100
		QUE5	MBE- Major Based Elective – III - Agricultural Chemistry / Environmental Chemistry	5	5	3	25	75	100
	V	GS	EA - Extension Activities	-	1	_	-	-	_
			GS – Gender Studies	1	1	3	25	75	100
			Total	30	29	_	-	-	600
	1		Grand Total	180	140	-	-	-	3900

Semester-I / Core Course-I(CC)	GENERAL CHEMISTRY-I	Course Code: QUA
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create			
Objectives	 To learn the periodic properties of elements and its classifications. To understand the theoretical aspects of qualitative and quantitative analyses. To understand the basics of alkanes, reactive intermediates and reaction mechanisms. To learn about the chemistry of cycloalkanes, alkenes and alkynes. To learn about the types, preparation and properties of sols, colloids and emulsions and the determination of molecular weight of macromolecules 			
UNIT	CONTENT	HOURS		
I	PERIODIC TABLE & PERIODIC PROPERTIES	18		
	Quantum Numbers, Filling up of atomic orbitals: Paulis's exclusion			
	Principle, Aufbau Principle, Hund's rule of maximum multiplicity -			
	electronic configuration. Stability associated with half-filled and			
	completely filled orbitals.			
	Periodic Properties of Elements: Variation of atomic volume,			
	atomic and ionic radii, ionization potential, electron affinity, electro			
	negativity along periods and groups, Pauling scale of electro negativity.			
	Classification of elements into s,p,d and f block elements.			
II		18		
II	Classification of elements into s,p,d and f block elements.	18		
II	Classification of elements into s,p,d and f block elements. ANALYTICAL METHODS	18		

common ion effect, complexation, oxidation – reduction reactions involved in identification of anions and cations – separation of cations into groups- Semi micro analysis of simple salts.

Volumetric Analysis – preparation of standard solutions – Normality, Molarity and Molality by titrimetric reactions – acid-base, redox, precipitation and complexometric titrations – indicators – effect of change in pH- selection of suitable indicators.

III ALKANES, REACTIVE INTERMEDIATES & METHODS FOR REACTION MECHANISMS

Introduction – Inductive, mesomeric, electrometric effects and hyperconjugation – structure of organic molecules based on sp³, sp² and sp hybridization. Alkanes – sources of alkanes – general preparation – general properties – conformational analysis of ethane and n-butane.

Carbocations, Carbanions, Carbenes and Nitrenes – Generation and stability of reactive intermediates - Correlation of reactivity with structure of reactive intermediates. Free radicals- Generation, Stability, identification methods. Free radical halogenation reactions and their mechanism.

Homolytic & Heterolytic Cleavages of bonds-Characteristics of nucleophilic, electrophilic and free radical reactions. Thermodynamic and kinetic aspects, Hammond's postulates, isotope effects, Energy Profile diagrams – Intermediate versus transition state, product analysis and its importance, crossover experiments, kinetic methods, isotopic effects.

IV CHEMISTRY OF CYCLOALKANES, ALKENE, DIENES AND ALKYNES

Preparation of Cycloalkanes – Chemical Properties – Relative stability of cyclopropane to cyclooctane – Baeyer's strain theory-limitations- Mono and disubstituted cyclohexanes.

Alkene – Nomenclature – Petroleum source of alkenes and aromatics – General methods of preparation of alkenes- Chemical properties – markovinkov's rule and peroxide effect – uses- elimination reactions and its mechanisms (E1,E2).

18

18

	Dienes- Structure and Properties – conjugated dienes – stability and resonance – electrophilic addition – 1,2-addition and 1,4-addition. Alkynes- Nomenclature – General methods of preparation- Physical properties- Chemical properties – uses.	
V	COLLOIDS AND MACROMOLECULES Colloids – Definition & types of colloids- Preparation, purification (dialysis, electro dialysis and ultrafiltration) and stability of colloids, Gold number. Properties of Colloids – Kinetic, Optical and Electrical properties. Emulsions – Types of emulsions, preparation, properties and applications, Donnan membrane equilibrium. Osmosis – Reverse Osmosis and Desalination. Macromolecules – Molecular Weight of macromolecules- determination of molecular weight by osmotic pressure and light scattering methods.	18
VI	Electronic Configuration of Poly electronic atoms & Preparation and Properties of higher order alkenes and dienes.	-

- 1. A.K.De, "A Textbook of Inorganic Chemistry" New age international publishers, 9th edition, 2002.
- 2. B.S. Bahl and Arun Bahl "Advanced Organic Chemistry, New Delhi, Sultan Chand and Co.,(22th edition) (2016)
- 3. B.R.Puri,L.R. Sharma ,K.K. Kalia "Principles of Inorganic Chemistry", New edition: Shoban Lal Nagin chand and co,.35th edition, 2013.

Reference Books:

- 1. R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000.
- 2. P.L. Soni, "Text book of Inorganic Chemistry", 20th revised edition, Sultan Chand & Sons, 2000.

- 3. B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 4. J.D. Lee, 'Concise Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.
- 5. R. Gopalan, P.S. Subramanian & K. Rengarajan, "Elements of Analytical Chemistry", 2nd edition, Sultan Chand & Sons, 1000.

Web - Resources:

- 1. https://www.topfreebooks.org.
- 2. https://www.e-booksdirectory.com

Course Outcomes:

On completion of the course the learner will be able

- CO 1: To understand the address of the electron and the concept of indicators and dilution.
- CO 2: To know the physical and chemical properties and uses of alkali metals, alkaline earth metals.
- CO 3: Recognize the basic practical skills for the synthesis of alkenes, alkynes and cycloalkanes.
- CO 4: Predict the geometry and hybridization of molecules in organic chemistry.
- CO 5: Apply the concept and uses of colloids in the applied field.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		PO					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	M	S	S	S	S	W	S	S	S	S
CO2	S	S	S	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	M	S	S	S	S
CO4	S	S	S	M	S	S	S	S	M	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N - No Correlation

Semester-I& II / Core Practical-I (Practical)	VOLUMETRIC ANALYSIS PRACTICAL	Course Code: QUBY
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives:

- To know the estimation of several cations and anions.
- To know the estimation of total hardness of water.
- To carry out the saponification value of an oil

I Titrimetric Quantitative analysis

- 1. Estimation of HCl
- 2. Estimation of Na₂CO₃
- 3. Estimation of oxalic acid
- 4. Estimation of Iron (II) Sulphate
- 5. Estimation of Ca (II)
- 6. Estimation of KMnO₄
- 7. Estimation of Fe (II) solution using internal and external indicators
- 8. Estimation of Cu (II) sulphate by K₂Cr₂O₇ solution
- 9. Estimation of Mg (II) by EDTA Solution
- 10. Estimation of Ca (II) by EDTA Solution

II-Applied Experiments

- 1. Estimation of Total hardness of water
- 2. Estimation of Saponification value of an oil

Text Book:

Reference Books:

- 1. G.Svehla- Vogel's Quantitative Inorganic Analysis 7th edition Pearson education Ltd.
- 2. J.Mendham, R.C. Denney, J.D. Barnes & M.J.K.Thomas- Vogel's Textbook of quantitative chemical analysis 6th edition Pearson education Ltd.

Web- Resources:

https://www.bookrix.com.

Course Outcomes:

On completion of the course the learner will be able

CO 1: Understand the basic chemistry skills through quantitative analytical experiments

CO 2: The learners able to know the techniques of titrimetric analysis

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO	РО					PSO							
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	M	S	S	S
CO2	S	S	S	S	S	S	S	S	S	M	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N - No Correlation

Semester-II / Core Course-II	GENERAL CHEMISTRY -II	Course Code: QUC
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 To understand the principles of bonding and theories of chemical To understand the chemistry of S-block elements and metallur group elements. To understand the aromatic character of benzene type moleculearn the reaction mechanisms involved in haloalkanes and halob To learn the mechanism of Nucleophillic substitution and Erreactions To understand about the properties of atoms, characteristics, radiations and the significance of wave functions. 	gy of zero les and to penzenes.
UNIT	CONTENT	HOURS
I	Ionic bond – formation, variable electrovalency – Lattice energy, Born – Haber Cycle. Covalent bond - formation, variable covalency, maximum covalency, covalent character in ionic bond – Fajans Rule. Polarisation – partial ionic character of a covalent bond. VB theory, MO theory – Basic principles of bonding and antibonding orbitals, applications of MOT to H ₂ He ₂ , N ₂ & O ₂ – molecular orbital sequence, comparison of VB & MO Theories. Hybridisation – Formation of BeCl ₂ & BCl ₃ . VSEPR theory of simple inorganic molecules – BeCl ₂ , SiCl ₄ , PCl ₅ , SF ₆ , IF ₇ , XeF ₆ , BF ₃ & H ₂ O. Hydrogen bonding – Intermolecular & Intramolecular H ₂ –	18

18

II CHEMISTRY OF s-BLOCK & ZERO GROUP ELEMENTS AND METALLURGY

General characteristics of s-block elements – comparative study of elements – alkali metals and theirhydroxides, oxides and halides, alkaline earth metals and their oxides, carbonates and sulphates.

Diagonal relationship of Li & Mg, Be & Al, chemistry of NaOH, KI &Mg(NH4)PO4.

Metallurgy: Occurrence of metals – concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process, purification of metals – electrolysis, zone refining, van Arkel de-Boer process.

Zero group elements – position in the periodic table, occurrence, isolation, applications, compounds of $Xe - XeF_6\& XeOF_4$.

III CHEMISTRY OF BENZENE AND BENZENOID COMPOUNDS

Aromaticity – Huckle's rule - structure of benzene – Benzene-preparation, chemical properties and uses. Aromatic electrophilic substitution reactions and mechanism – Orientation and reactivity in substituted benzenes.

Polynuclear aromatic hydrocarbons – Nomenclature, Naphthalene from coal tar and petroleum – Laboratory preparation, Structure of Naphthalene, Aromatic character, Physical properties, Chemical properties, Uses. Mechanism of Aromatic electrophilic substitution – Theory of orientation and reactivity.

Anthracene, Phenanthrene from coal tar and petroleum, Laboratory preparation, Molecular Orbital structures, Aromatic Characters, Physical Properties, Chemical properties and uses. Preparation of biphenyls, Physical and Chemical properties and uses.

IV	ALKYL AND ARYL HALOGENS	18
	Nomenclature of haloalkanes – structure - general	
	preparations of haloalkanes - physical and chemical properties and	
	uses.	
	Nucleophilic aliphatic substitution reaction mechanisms (S_N1	
	and $S_N 2$) – Stereochemical aspects.	
	Halobenzenes: Theory of orientation and reactivity - general	
	preparation – properties - uses. Electrophilic and nucleophilic	
	aromatic substitution reaction mechanisms.	
V	ATOMIC STRUCTURE AND BASIC QUANTUM	18
	MECHANICS	
	Rutherford's and Bohr's model an atom- Bohr's theory and	
	origin of hydrogen spectrum. Sommerfield's extension of Bohr's	
	theory. Electromagnetic radiation- definitions for, v and	
	velocity.Dualism of light -Particle nature of radiation- black body	
	radiation and Planck's quantum theory, photoelectric effect and	
	Compton effect of matter.De Broglie hypothesis and Davisson and	
	Germer experiment. Heisenberg's uncertainty principle.	
	Schrodinger wave equation (Derivation not needed). Physical	
	significance of Ψ and Ψ^2 .	
X77		
VI	Calculation of Bond Order & Determining stability of homo	-
	and hetero diatomic molecules.	

- 1. J.D.Lee, "Concise Inorganic Chemistry", Sultan Chand and Sons, 20th revised edition, 2000.
- 2. B.S. Bahl and Arun Bahl, "Advanced Organic Chemistry , New Delhi, Sultan Chand and Co., $(22^{th}\ edition)\ (2016)$
- 3. B.R.Puri,L.R. Sharma ,K.K. Kalia principles of Inorganic chemistry. New edition: Shoban Lal Nagin chand and co. 35^{th} edition , 2013.

Reference Books:

- 1. R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000.
- 2. P.L. Soni, "Text book of Inorganic Chemistry", 20th revised edition, Sultan Chand & Sons, 2000.

- 3. B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 4. J.D. Lee, 'Concise Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.
- 5. R. Gopalan, P.S. Subramanian & K. Rengarajan, "Elements of Analytical Chemistry", 2nd edition, Sultan Chand & Sons, 1991.

Web Resources:

https://www.topfreebooks.org.

https://bookboon.com.

https://www.e-booksdirectory.com

Course Outcomes:

On completion of the course the learner will be able

- CO 1: The learners are able to predict the geometry of molecule
- CO 2: To equip the learners with concepts of s block elements through comparative study
- CO 3: To know about the reaction mechanisms of aromatic and heterocyclic compounds.
- CO 4: To know about the chemistry of Halogens.
- CO 5: To know the fundamental concepts of atomic structure and basics of quantum mechanics.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		PO					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	W	S	S	S	W	W	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	W	W	S	S	S	S
CO5	S	S	S	W	W	S	S	S	M	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

N – No Correlation

Semester-III /	GENERAL CHEMISTRY -III	Course Code: QUD
Core Course-III		
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 To learn the chemistry of p-block elements. To study about the preparations and properties of interhalogen continuous to understand the arrangement of atoms in space, isomers nomenclature. To learn about the gas laws, properties of real gases and molecular velocities. To learn the types, structure and properties of solids and liquid crystalline. 	and their types of
UNIT	CONTENT	HOURS
I	CHEMISTRY OF p-BLOCK ELEMENTS	18
	· ·	
	General characteristics of p-block elements. Comparative	
	•	
	General characteristics of p-block elements. Comparative	
	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of	
	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole.	
	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides	
	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides of carbon – CO, CO ₂ . Allotropic forms of carbon.	
II	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides of carbon – CO, CO ₂ . Allotropic forms of carbon. Compounds of nitrogen and phosphorous – NH ₂ .NH ₂ , H ₂ NOH,	18
II	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides of carbon – CO, CO ₂ . Allotropic forms of carbon. Compounds of nitrogen and phosphorous – NH ₂ .NH ₂ , H ₂ NOH, hydrazoic acid, N ₂ – Cycle, fixation of N ₂ , PH ₃ and P ₂ O ₅ .	
II	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides of carbon – CO, CO ₂ . Allotropic forms of carbon. Compounds of nitrogen and phosphorous – NH ₂ .NH ₂ , H ₂ NOH, hydrazoic acid, N ₂ – Cycle, fixation of N ₂ , PH ₃ and P ₂ O ₅ . INTERHALOGEN COMPOUNDS	
II	General characteristics of p-block elements. Comparative study of elements of III A & their compounds. Compounds of boron –boric acid, borax, borazole. Extraction of Al and Pb - alums, alloys of Al. Chemistry of oxides of carbon – CO, CO ₂ . Allotropic forms of carbon. Compounds of nitrogen and phosphorous – NH ₂ .NH ₂ , H ₂ NOH, hydrazoic acid, N ₂ – Cycle, fixation of N ₂ , PH ₃ and P ₂ O ₅ . INTERHALOGEN COMPOUNDS Peracids of sulphur, Thionic acids, sodium thiosulphate –	

	Polyhalides and basic nature of iodine.	
III	STEREOCHEMISTRY	18
	Principles of symmetry – symmetry elements (Cn, Ci and	
	Sn) - asymmetry and dissymmetry - isomerism - constitutional	
	isomers - stereoisomers - enantiomers - diastereomers -	
	geometrical isomerism - meso and dl compounds - conventions	
	used in stereochemistry: Newman, Sawhorse and Fischer notations	
	and their interconversions.	
	Nomenclature, correlation of configuration – Cahn-Ingold-	
	Prelog rules for simple molecules - R,S and D,L notations to	
	express configurations - chirality - optical isomerism - optical	
	activity - polarimeter - specific rotation - stereochemistry of	
	allenes and spiranes	
	Atropisomerism- erythro and threo conventions – stereoselectivity,	
	stereospecificity in organic reactions with examples. Resolution of	
	racemic mixture- Walden Inversion - conformational analysis of	
	cyclohexane - asymmetric induction.	
IV	GASEOUS STATE	18
	Gases - Boyle's law, Charle's law and Avagadro's law- ideal	
	gas equation. Real Gases- deviation from ideal behaviour – van der	
	Waals equation of states- derivation - significance of critical	
	constants- law of corresponding states-compressibility factor.	
	Inversion temperature and liquefaction of gases- Linde and	
	Claude – demagnetization methods. Maxwell's distribution of	
	molecular velocities (Derivation not needed). Types of molecular	
	velocities- mean, most probable and root mean square velocities-	
	Inter relationships. Collision diameter, mean free path and collision	
	number.	
V	SOLID STATES AND LIQUID CRYSTALS	18
	Classification of solids- Isotropic and anisotropic crystals-	
	elements of symmetry-basic seven crystal systems- laws of	

	crystallography- representation of planes-miller indices, space lattice and unit cell.											
	X-ray diffraction- derivation of Bragg's equation-											
	determination of structures of NaCl by Debye Scherrer (powder											
	method) and rotating crystal methods. Types of crystals, close											
	packing of identical solid spheres, interstitial sites, limiting radius											
	ratios (derivation not needed), radius ratio rule and shapes of ionic											
	crystals, structures of NaCl, CsCl and ZnS.											
	Semiconductors-intrinsic and extrinsic semi conductors- n and p-											
	type semiconductors.Liquid crystals- types and applications.											
VI	Coordination numbers of cations and anions in ionic crystals from	-										
	radius ratio Unit Cell diagrams of crystal structures.											

- 1. B.R.Puri,L.R.Sharma, K.K.Kalia, Principles of Inorganic Chemistry,23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. Bahl, B.S. and Bahl, A., Advanced Organic Chemistry,(12th edition), New Delhi, Sultan Chand &Co., (2010).
- 3. BahlB.S.,ArunBahl and Tuli G.D.(2012).Essential of Physical Chemistry,New Delhi: Sultan Chand and sons.

Reference Books:

- 1. B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000.
- 3. J.D. Lee, 'Concise Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.
- 4. Gurdeep Raj, 'Advanced Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.
- 5. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011).

Web- Resources:

- 1. https://www.topfreebooks.org.
- 2. https://bookboon.com.
- 3. https://www.e-booksdirectory.com

Course Outcomes:

On completion of the course the learner will be able

- CO 1: To equip the learners with concepts of p block elements through comparative study.
- CO 2: Physical and chemical properties of Pseudo halogen and Interhalogen compounds.
- CO 3: Aware of the fundamental aspects of stereochemistry.
- CO 4: To understand the aspects of gaseous state
- CO 5: Learn about solids, their properties, close packing in crystals, use of X-rays in crystal structure determination and Properties of Liquid Crystal.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		РО					PSO							
	1	2	3	4	5	1	2	3	4	5	6	7	8	
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	M	S	S	S	S	M	S	S	S	S	
CO3	S	S	S	M	S	S	S	S	M	S	S	S	S	
CO4	S	S	S	W	S	S	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S	

- S Strongly Correlated
- M Moderately Correlated
- W -Weakly Correlated
- N No Correlation

Semester-III & IV /	QUALITATIVE ANALYSIS (P)	Course Code: QUEY
Core Course-II		
(Practical)		
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives:

- To learn the techniques of semi micro qualitative analysis of Inorganic Salt mixtures.
- To become familiar with elimination of interfering acid radicals.

SEMIMICRO INORGANIC QUALITATIVE ANALYSIS

Analysis of a mixture containing two cations and two anions of which one will be an interfering acid radical. Semimicro methods using the conventional scheme with hydrogen sulphide may be adopted.

Cations to be studied: Lead, Copper, Bismuth, Cadmium, Iron, Aluminium, Zinc, Manganese, Cobalt, Nickel, Barium, Calcium, Strontium, Magnesium and Ammonium.

Anions to be studied: Carbonate, Sulphide, Sulphate, Nitrate, chloride, Bromide, Fluoride,

Borate, Oxalate and Phosphate

Text Book:

 V.Venkateshwaran, R.Veeraswamy, A.R.Kulandaivelu Basic Principles of Practical Chemistry, 2nd edition 1997

Reference Books:

- 1. G.Svehla- Vogel's Quantitative Inorganic Analysis 7th edition Pearson education Ltd.
- 2. J.Mendham, R.C. Denney, J.D. Barnes &M.J.K.Thomas- Vogel's Textbook of quantitative chemical analysis 6th edition Pearson education Ltd.

Web- Resources:

https://www.bookrix.com.

Course Outcomes:

On completion of the course the learner will be able

CO 1: Familiarize the test involving identification of Cations and Anions.

CO 2: To know the techniques for elimination of acid radicals.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO			PO						P	SO			
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

N - No Correlation

Semester-III / Non Major Elective I	CHEMISTRY OF CONSUMER PRODUCTS	Course Code: QUE1
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Acquire / Remember						
Level	K2 -Understanding						
	K3-Apply						
	K4 -Analyze						
	K5-Evaluate						
	K6 -Create						
Course	To know the preparation and applications of different types of soap.						
Objectives	• To learn about the composition of Shampoos, Conditioners, Powder, Nail polish and Lipstick.						
	To gain knowledge about constituents and functions of Paint and Varnish.						
	To learn about preparation and applications of various dyes.						
	To know the preparation and uses of synthetic plastics, Resins and Rubber.						
UNIT	CONTENT	HOURS					
I	SOAPS AND DETERGENTS	6					
	Manufacture of soaps, formulation of toilet soaps - different						
	ingredients used- Soft soaps, shaving soaps and creams. Anionic						
	detergents - manufacture and applications - cationic detergents -						
	manufacture and applications.						
II	COSMETICS	6					
	Shampoos – different kinds of shampoos – anti – dandruff, anti –						
	lice, herbal and baby shampoos hair dye – manufacture of conditioners -						
	1						
	skin preparation – skin powder, nail polish, lipsticks.						

	Constituents and their function – types and applications.	
IV	DYES Classification – preparation and uses of alizarin, Indigo, Methyl orange, Phenolphthalein and Malachite green.	6
V	Plastics – Resins and Rubber Synthetic resins and plastics, synthetic polymers – important basic plastics and uses - rubber, vulcanization.	6

- 1. Thangamma Jacob, A Text Book of Applied Chemistry for Home Science and Allied Sciences.
- 2. B.K.Sharma, Industrial Chemistry Goel Publishing House (1995).

Reference Books:

- 1. R. Norris Shreve, Chemical process Industries.
- 2. Jayashree Ghosh, Fundamental Concept of Applied Chemistry,1st Edition (2006) S. Chand Company Ltd., New Delhi.

Web- Resources:

- 1.https://www.topfreebooks.org.
- 2.https://bookboon.com.

Course Outcomes:

On completion of the course the learner will be able

- CO 1: To learn depth knowledge about soap and detergent. To make plastics and know about the properties and applications of plastics
- CO 2: How to manufacture cosmetics
- CO 3: To know the applications of paint and varnishes.
- CO 4: To acquire the basic knowledge of classification, preparation and uses of dyes.
- CO 5:To make plastics and know about the properties and applications of plastics

Semester-IV /	GENERAL CHEMISTRY - IV	Course Code: QUF
Core Course-IV		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 To learn about the compounds of d- and f- block elements. To study about preparation, properties and uses of organ metallic contents. To know the chemical processes involved in the preparation, conversion and application of alcohol, phenol and ethers. To learn the thermodynamic principle and thermo chemistry aspects. To study about rate of chemical reaction and theories of reaction rate. 	chemical
UNIT	CONTENT	HOURS
I	d-BLOCK & f-BLOCK ELEMENTS General characteristics of d-block elements, comparative study of zinc group elements. Extraction of Mo and Pt – Alloys of copper, amalgams and galvanization. Evidences for the existence of Hg ²⁺ ions General characteristics of f-block elements – Lanthanides Electronic configuration – oxidation states – ionic radii, lanthanide contraction. Colour and magnetic properties. Extraction of mixture of lanthanides from monazite sand and separation of lanthanides. Uses of lanthanides. Actinides Sources of actinides – preparation of transuranic elements – electronic configuration – oxidation states – ionic radii – colour of ions – comparison with lanthanides. Extraction of thorium from monazite sand. Production and uses of plutonium.	15
II	CHEMISTRY OF ORGANOMETALLIC COMPOUNDS	15

	Introduction – Preparation of organomagnesium compounds – physical and chemical properties – uses. Organozinc compounds – general preparation, properties and uses. Organolithium, Organocopper compounds – Preparation, properties and uses.Organolead, Organophosphorous and organoboron compounds – Preparation, properties and uses.	
III	UNIT III CHEMISTRY OF ALCOHOLS, PHENOLS AND ETHERS Nomenclature – Individual source of alcohols – preparation of alcohols: hydration of alkenes, oxymercuration, hydroboration, Grignard addition, reduction – Physical, chemical properties and uses-Glycols from dihydroxylation, reduction, substitution reactions and glycerols and their uses. Preparation of Phenols including di- and trihydroxy phenols – Physical and chemical properties – uses- aromatic electrophilic substitution mechanism – theory of orientation and reactivity. Preparation of ethers: dehydration of alcohols, Williamsons synthesis – silyl ether, epoxide from peracids – Sharpless asymmetric epoxidation – reactions of epoxides – uses – introduction to crown ethers – structures – applications.	15
IV	UNIT IV THERMODYNAMICS I Definitions – System and Surround – isolated, closed and open system – state of the system- intensive and extensive variables. Thermodynamic processes – reversible and irreversible, isothermal and adiabatic processes – state and path functions. Work of expansion at constant pressure and at constant volume, First law of thermodynamics – statement – definition of internal energy (E), enthalpy (H) and heat capacity. Relationship between Cp and Cv. Calculation of w, q, dE and dH for expansion of ideal and real gases under isothermal and adiabatic conditions of reversible and irreversible processes. Thermo chemistry – relationship between enthalpy of reaction at	15

	constant volume (q_v) and at constant pressure (q_p) – temperature	
	dependence of heat of reaction – Kirchoff's equation – bond energy	
	and its calculation from thermo chemical data-integral and differential	
	heats of solutions and dilution.	
V	CHEMICAL KINETICS	15
	Rate of reaction -rate equation, order and molecularity of	
	reaction. Rate laws - rate constants - derivation of first order rate	
	constant and characteristics of zero order, first order and second order	
	reaction – derivations of time for half change $(t_{1/2})$ with examples.	
	Methods of determination of order of reactions – experimental methods	
	- determination of rate constant of a reaction by volumetry, colorimetry	
	and polarimetry.	
	Effect of temperature on reaction rate – concept of activation energy,	
	energy barrier. Arrhenius equation. Theories of reaction rates -	
	collision theory – derivation of rate constant of bimolecular reaction –	
	failure of collision theory - Lindemann's theory of unimolecular	
	reaction.	
	Theory of absolute reaction rate – derivation of rate constant for a	
	bimolecular reaction - significance of entropy and free energy of	
	activation. Comparison of collision theory and Absolute Reaction Rate	
	Theory (ARRT).	
VI	Derivation of Critical Constant in terms of Vanderwaals constant	-
	•	

- 1. R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000. (Unit I & II)
- 2. Bahl B.S. and Bahl A., Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2010). (Unit-III)
- 3. Puri B.R., Sharma L.R. and Pathania M.S. Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin Chand and Co. (2013) (Unit-IV &V)

Reference Books:

- 1.B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. J.D. Lee, 'Concise Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.
- 3. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011).
- 4. Samuel Glasstone, Thermodynamics for Chemists (3rd printing), East- West Edn. (1974)
- 5. Puri B.R., Sharma L.R. and Pathania M.S., Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin Chand and Co. (2013)

Web- Resources:

http://www.webelements.com

https://www.topfreebooks.org.

http://www.lib.utexas.edu/thermodex

https://www.e-booksdirectory.com

Course Outcomes:

On completion of the course the learner will be able

- CO 1: To learn about the compounds of d and f-block elements.
- CO 2: To acquire the knowledge of preparation, properties and uses of Organo metallic compounds.
- CO 3: To know the chemical processes involved in the preparation of alcohols and ethers.
- CO 4: To learn the thermodynamic principles and thermo chemistry aspects.
- CO 5: To gain knowledge about the rate of chemical reaction and its theory.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO			PO					PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	W	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	S	S	W	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

N – No Correlation

Semester-V /	Food Science	Course Code: QUE2
Non Major Elective – II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 To learn the importance of food and nutritional care To study the biological functions of food To understand the constituents of food To acquire knowledge about adulteration in food. To understand health problems due to food adulterants. 	
UNIT	CONTENT	HOURS
I	FOOD NUTRITION Food, Nutrition and Health – The meaning of food nutrition, nutritional care and health - Nutritional problems in India.	6
II	BIOLOGICAL IMPORTANCE Biological importance of food – Nutritional classification of food – nutrients as body constituents – digestion and absorption of food, caloric content and dieting.	6
III	CONSTITUENT OF FOOD Basic chemical constituents of food – Biological functions of carbohydrates, proteins, fats, vitamins, minerals and water.	6
IV	FOOD ADULTERATION Food adulterants testing – common adulterants in food – testing methods of all food adulterants.	6
V	HEALTH EFFECTS Health Problems of food adulteration — Principal adulterants and their health effects.	6

- 1. Alex Ramani V– Food Chemistry, MJP Publishers, Tripilcane, Chennai, 2009.
- 2. Thang Jacob, Food adulteration, Mac Millan company of India Ltd., New India, 1976.

Reference Books:

- 1. Jeyaramanj, Laboratory manual in biochemistry, Wiley eastern Ltd., New Delhi, 1981.
- 2.B.Srilakshmi, "Food Science", 3rd edition, New age International (P) Ltd., New Delhi, 2005.
- 3.B.Srilakshmi, "Nutrition Science", 1st edition, New age International (P) Ltd., New Delhi.
- 4. Swaminathan M, "Food Science and Experimental Foods", Ganesh & Company.
- 5. Corrinne H.Robinson, "Fundamentals of normal nutrition", Mac Millan Company of India Ltd., New Delhi.

Web- Resources:

- 1. https://www.topfreebooks.org.
- 2. https://bookboon.com.

Course Outcomes:

On completion of the course the learner will be able

- CO 1: Knowledge of food nutrition, health and awareness of nutritional problems in India.
- CO 2: To analyze the biological importance and nutritional classification of food.
- CO 3: To learn depth knowledge about constituent, biological functions of carbohydrates, proteins, fats, vitamins, minerals and water
- CO 4: To identify the adulterants, present in food and their testing methods.
- CO 5: To be able to recognize the principal adulterants and their health effects.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO	РО					PSO							
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	W	S	S	S	S	S	W	S	M	S
CO2	S	S	S	S	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	W	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

N – No Correlation

Semester-V /	PHARAMACEUTICAL CHEMISTRY	Course Code: QUS1
Skill Based Elective – I		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 To learn the terminology and routes of administration of drug. To learn the use of Indian Medicinal plants. To know about designation of drugs To know about common body ailments and treatment. To gain knowledge in vitamins, micronutrients and antioxidant. 	
UNIT	CONTENT	HOURS
I	INTRODUCTION Common diseases – Infective diseases – insect – borne, and waterborne – hereditary diseases – Terminology – drug , pharmacology , pharmacognosy , pharmacodynamics , pharmacokinetics, antimetabolic. Absorption of drugs – routes of administration of drugs , factors affecting absorption –Assay of drugs – chemical , biological , immunological assays.	6
II	DRUGS Various sources of drugs , pharmacologically active constituents in plants. Indian medicinal plants – tulsi , neem , keezhanelli – their importance. Classification of drugs – biological chemical – mechanism of drug action – action at cellular and extra cellular sites.	6
III	CHEMOTHERAPY Designation of drugs based on physiological action , Definition and two examples each of Anesthetics – General , IV and local – Analgesics –	6

	Narcotic and synthetic – Antipyretic and anti inflammatory agents – Antibiotics – penicillin , streptomycin, chloramphenicol, tetracyclines – Antivirals .								
	AIDS – symptoms, prevention, treatment.								
IV	COMMON BODY AILMENTS	6							
	Diabetes – causes, hyper and hypoglycemic drugs.								
	Blood pressure – Sistolie& Diastolic Hypertensive drugs – Cardiovascular								
	drugs – antiarrhythmic, antianginals, vasodilators.								
	CNS depressants and stimulants – Psychedelic drugs, hypnotics, sedatives								
	(barbiturates, LSD).								
V	HEALTH PROMOTING DRUGS	6							
	Nutrients – Vitamins A, B, C, D, E and K. Micronutrients Na, K, Ca,								
	Cu, Zn and I – Medically important inorganic compounds of Al P AS Hg								
	Fe- L examples each their role and application.								
	Organic Pharmaceutical acids , Agents for pilitary function (metyrapone) –								
	Organic pharmaceutical bases – antioxidants .								

- 1. JayasreeGhose, Pharmaceutical chemistry, S,Chand and Company Ltd., New Delhi, 2006.
- 2. Lakshmi S., Pharmaceutical chemistry, S.Chand& and sons, New Delhi, 1995.

Reference Books:

- 1. Ashutosh Kar, Medicinal chemistry, Willey Eastern Ltd,. New Delhi,1993.
- 2. David William & Thomas Lemke , Foyes principles of medicinal chemistry , $5^{\rm th}$ edition Bl publishers, 2005 .
- 3. Romas Nogrady, Medicinal chemistry, II Edition, Oxford Univ. Press, 2004.
- 4. Cherilyn Tilman, "Principles of Occupational Health and Hygiene-an introduction" Allen and Unwin, Sydney, 2007.
- 5. Fryer, Jane Eayre, "FirstAid Book", John C. Winston Company.

Web- Resources:

https://www.topfreebooks.org.

https://bookboon.com.

Course Outcomes:

On completion of the course the learner will be able

CO 1: To know the terminology in Pharmaceutical chemistry.

CO 2: To understand the assay of drugs, administration ofdrugs.

CO 3: To classify drugs based on biological and chemical methods.

CO 4: To recognize the chemotherapy of some common diseases.

CO 5: To learn depth concepts of nutrients and organic pharmaceutical aids.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		PO						PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

N - No Correlation

Semester-V /	INORGANIC CHEMISTRY-I	Course Code: QUG
Core Course-V		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students understand the concept of isomerism in coordination composition structural and magnetic properties. Students study about the theories of coordination compounds. Students learn about types of reactions of complexes and their mechalism about Jahn teller effect and chelate effect. Students learn about the preparation, properties, structure, bonding a carbonyl, borides, carbides and nitrides. Students learn about classification, preparation, properties, structure properties and application of dipole moment of Nitrosyl Compounds 	nanism and and uses of e, magnetic
UNIT	CONTENT	HOURS
I	COORDINATION COMPOUNDS-I Introduction- Types of ligands: unidentate, bidentate and poly dentate ligands, chelating ligands and chelates- IUPAC nomenclature of coordination compounds. Isomerism in coordination compounds: Structural isomerism, hydrate isomerism, co ordination isomerism, ionisation isomerism, linkage isomerism, coordination position isomerism. Stereoisomerism: Geometrical isomerism of four and six coordinate complexes, optical isomerism of four and six coordinate complexes, Werner and sidgwick theories, methods of detecting complex	15

	formation.	
Π	COORDINATION COMPOUNDS-II Theories of coordination compounds: Valence bond theory, limitations of valence bond theory, crystal field theory – splitting of d orbitals in octahedral, tetrahedral and square planar fields, CFSE, factors affecting CFSE, colour, geometry and magnetic properties of coordination compounds, Jahn – Teller distortion (an elementary idea). Molecular orbital theory: Molecular orbital diagram for [Co(NH ₃)] ³⁺ . Ligand field theory. (An elementary treatment only).	15
III	COORDINATION COMPOUNDS-III Labile and inert complexes, stability of coordination compounds- thermodynamic and kinetic stability, relationship between stepwise formation constant and overall formation constant, factors affecting the stability of complexes. Unimolecular and bimolecular nucleophilic substitution reactions in octahedral and square planar complexes, trans effect- theories of trans effect and applications. A few biologically important coordination compounds: Chlorophyll, haemoglobin and vitamin B ₁₂	15
IV	CARBONYLS AND BINARY METALLIC COMPOUNDS Metal carbonyls: Mono and binuclear carbonyls of Ni, Fe, Cr, Co and Mn- preparation, structure, reactions, bonding and uses.Structure and bonding in metal alkenyl and metal alkyl complexes of [PtCl ₃ (C ₂ H ₄)]-,[Co(CO) ₆ (RC CR)] and ferrocene.Binary metallic compounds: borides, carbides, hybrides and nitrides- classification, preparation, properties and uses.	15
V	NITROSYL COMPOUNDS AND MAGNETIC PROPERTIES Nitrosyl compounds: Classification- nitrosyl chloride and sodium nitroprusside- preparation, properties and structure. Magnetic properties-meaning of the terms-magnetic susceptibility-	15

	magnetic moment-types of magnetism-Gouy balance-applications of magnetic properties Dipolemoment- determination, application in the study of simple inorganic molecules.	
VI	Survey of Common mono denate and bi denate ligand.	-

- 1.R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000.
- 2.P.L. Soni, 'Text Book of Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.

Reference Books:

- **1.** W.U. Malik, G.D. Tuli and R.D. Madan, S.Chand and Company Ltd., 'Selected topics in Inorganic Chemistry', 7th edition, 2001.
- **2.**Gopalan R, Text Book of Inorganic Chemistry, 2nd Edition, Hyderabad, Universities Press, (India), 2012.
- 3.B.R. Puri, L.R. Sharma, K.C. Kalia, 'Principles of Inorganic Chemistry', 21st edition, Vallabh Publications, 2004-2005.
- 4.J.E. Huheey, 'Inorganic Chemistry', 4th edition, Pearson Education. Inc. 1993.
- 5.F.A. Cotton, 'Advanced Inorganic Chemistry', 6th edition, John Wiley & Sons, Pvt. Ltd., 2003 2004.

Web- Resources:

https://www.chemheritage.org/

http://www.chemspider.com/

Course Outcomes:

- CO 1: Understand the types of ligands & isomerism.
- CO 2: Recognize the splitting of orbitals.
- CO 3: Know the importance of coordination compounds.
- CO 4: Recognize the structure and bonding of carbonyls and binary metallic compounds.
- CO 5: Predict the magnetic properties of coordination compounds.

CO/PO		РО							P	PSO			
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	W	S	S	S	S	S	S	S	S	S
CO2	S	S	S	M	M	S	S	S	M	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-V /	ORGANIC CHEMISTRY I	Course Code: QUH
Core Course-VI		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course Objectives	A Comprehensive knowledge and understanding on the compounds and Nitrogen compounds.	carbonyl
	To acquire knowledge in carboxylic acids.	
	Specialized students with in depth knowledge in functional groups	oup inter
	conversion.	
	Students acquire the knowledge about heterocyclic compounds	nds and
	chemistry of dyes.	
	Students learn about redox reagents and their application.	
UNIT	CONTENT	HOURS
I	CHEMISTRY OF CARBONYL COMPOUNDS	15
	Nomenclature – structure of carbonyl compounds- chemical	
	properties- nucleophilic addition mechanism at carbonyl group	
	(eg: HCN,ROH,RNH ₂) – acidity of alpha hydrogen- keto- enol	
	Tautomerism (proof for the two forms)	
	Reduction and oxidation reactions of carbonyl compounds-	
	paraformaldehyde, metaformaldehyde-uses of aliphatic carbonyl	
	compound- Claisen condensation- Aldol condensation- Robinson	
	annulations.	
	General methods of preparation of aromatic carbonyl compounds-	

	physical and chemical properties-uses-effect of aryl group on the reactivity of carbonyl group.	
II	CHEMISTRY OF CARBOXYLIC ACIDS Nomenclature- Acidity of carboxylic acids based on substituent effect- comparison of acid strength of halogen substitute acetic acids- acid strengths of substituted benzoic acids- Acid derivatives- Nucleophilic substitution mechanism at acyl carbon. Preparation, properties and uses of acid derivatives: acid chloride, anhydrides, esters, amides- chemistry of compounds containing active methylene group- synthesis and synthetic applications of acetoacetic ester and malonic ester. Preparation of dicarboxylic acid- physical and chemical properties-uses. Introduction to oils and fats- fatty acidsmanufacture of soap-mechanism of cleaning action of soap.	15
III	CHEMISTRY OF NITROGEN COMPOUNDS Nomenclature- nitro alkanes- alkyl nitrites- differences- aromatic nitro compounds- preparation and reduction of nitro benzene under different conditions, TNT. Amines- effect of substituent's on basicity of alipahatic and aromatic amines- Reactions of amino compounds (primary, secondary, tertiary and quaternary amine compounds)-Mechanism of carbylamine's reaction, diazotization and comparison of aliphatic and aromatic amines. Diazonium compounds – preparation and synthetic applications of diazomethane, benzene diazonium chloride and diazo acetic ester.	15
IV	CHEMISTRY OF HETEROCYCLIC COMPOUNDS AND DYES Introduction- nomenclature of heterocyclic compounds having not more than two hetero atoms such as oxygen, nitrogen	15

	and sulphur- structure, synthesis and properties of furan,pyrrole,thiophene.Pyridine- structure,preparation-compare the basicity of pyridine with pyrrole and amines. Quinoline- structure and Skraup synthesis. Isoquinoline-structure and Napieralski synthesis and Indole- structure and Fischer- indole syntheses. Dyes- color and constitution- chromophore- auxochrome-	
	classification according to application and structure- preparation and uses of – methyl orange, fluorenscein, Alizarin, Indigo and malachite green dyes.	
V	UNIT V OXIDATION AND REDUCTION Oxidation: Osmium tetroxide- Chromyl chloride – Ozone-DDQ-Dioxiranes. Lead tetraacetate- selenium dioxide-DMSO either with Ac ₂ O or oxalyl chloride-Dess- Martin reagent. Reduction: Catalytic hydrogenation using Wilkinson Catalyst-Reduction with LAH, NaBH ₄ , tritertiarybutoxy aluminum hydride, NaCNBH ₃ , hydrazines	15
VI	identify the resonance structures of heterocyclic compounds	-

- 1. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011)
- 2. Bahl, B.S. and Bahl, A., Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., 2010.

Reference Books:

1. Finar I.L., Organic Chemistry, Vol 1&2, (6th edition) England, addison Wesley Longman Ltd. (1996).

- 2. Pine S.H., Organic Chemistry, (5th edition) New Delhi, McGraw Hill International Book Company (1987)
- 3. Seyhan N. Ege, Organic Chemistry, (5th edition) New York, Houghton Mifflin Co., (2005)
- 4. Ahluwalia V.K., Rakesh Kumar Prashar, "Organic Reaction Mechanisms", (4th Edition), Alpha Science International., (2011).
- 5. Paula YurkanisBruice, "Organic Chemistry", (8th Edition), University of California, Santa Barbara, Pearson Ltd., (2011).

Web- Resources:

http://organicdivision.org/links.html

http://www.chemistryguide.org/

Course Outcomes:

On completion of the course the learner will be able to

- CO 1: Learn about the reduction and oxidation reaction of carbonyl compounds
- CO 2: Understand the preparation, properties and uses of carbonyl compounds
- CO 3: Know about the chemistry of Nitrogen compounds
- CO 4: Predict the structure of Heterocyclic compounds
- CO 5: Aware the types of oxidizing and reducing agents

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO			PO						P	SO			
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	M	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W - Weakly Correlated

Semester-V / Core Course-VII	PHYSICAL CHEMISTRY I	Course Code: QUI
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students gain knowledge in Photo chemistry and Group theory. Students understand the efficient way of converting work into energy and from the thermodynamic perspective. Students get to know the energy changes involved in the natural and the processes – that are the applications of thermodynamics. Students understand the method of enhancing the efficiency of the certain processes. Students learn about solutions, their types, colligative properties, effect of and molecular weight determination. 	e industrial
UNIT	CONTENT	HOURS
I	PHOTOCHEMISTRY AND GROUP THEORY	18
	Consequences of light absorption- Jablonski diagram- radiative and	
	non- radiative transitions. Lambert's Beer law, quantum efficiency.	
	non- radiative transitions. Lambert's Beer law, quantum efficiency. Photochemical reactions- Comparison between thermal and photochemical	
	· -	
	Photochemical reactions- Comparison between thermal and photochemical	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence,	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence, Phosphorescence and chemiluminescence. Laser and uses of lasers	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence, Phosphorescence and chemiluminescence. Laser and uses of lasers Group theory- symmetry elements and symmetry operation- group postulates	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence, Phosphorescence and chemiluminescence. Laser and uses of lasers Group theory- symmetry elements and symmetry operation- group postulates and types of groups- abelian and non abelian- symmetry operation of H_2O	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence, Phosphorescence and chemiluminescence. Laser and uses of lasers Group theory- symmetry elements and symmetry operation- group postulates and types of groups- abelian and non abelian- symmetry operation of H_2O molecule.	
	Photochemical reactions- Comparison between thermal and photochemical reactions. Photosensitization and quenching. Fluorescence, Phosphorescence and chemiluminescence. Laser and uses of lasers Group theory- symmetry elements and symmetry operation- group postulates and types of groups- abelian and non abelian- symmetry operation of H ₂ O molecule. Illustration of group postulates using symmetry operation of H ₂ O molecule-	

II	THERMODYNAMICS II	18
	Second law of thermodynamic – need for the law – different statements	
	of the law- Carnot cycle and efficiency of heat engine- Carnot's theorem-	
	thermodynamic scale of temperature.	
	Concept of entropy- definition and physical significance of entropy- entropy	
	as a function of P,V and T – entropy changes during phase changes – entropy	
	of mixing- entropy criterion for spontaneous and equilibrium processes in	
	isolated system.	
	Gibb's free energy(G) and Helmoholtz free energy (A)- variation of A and G	
	with P,V and T-Gibb's- Helmholtz equation and its applications.	
	Thermodynamics equation of state, Maxwell's relations-A and G as criteria	
	for spontaneity and equilibrium.	
III	THERMODYNAMICS III	18
	Equilibirum constant and free energy change- thermodynamic	
	derivation of law of mass action- equilibrium constants in terms of pressure	
	and concentraation-NH ₃ ,PCl ₅ and CaCO ₃ .	
	Thermodynamic interpretation of Lechatelier's principle (Concentration,	
	temperature, pressure and addition of inert gases).	
	System variables composition- partial molar quantities- chemical potential-	
	variation of chemical potential with T, P and X (mole fraction)- Gibb's	
	Duhem equation. Van't Hoff's reaction isotherm- van't Hoff's isochore.	
	Clapeyron equation and Clausis- Clapeyron equation-applications.	
	Third law of thermodynamics- Nernst heat theorem. Statement of III law and	
	concept of residual entropy- evaluation of absolute entropy from heat capacity	
	data.	
IV	SOLUTIONS	18
	Raoult's law, Henry's law, Ideal and non- ideal solutions, completely	
	miscible liquid systems-benzene and toluene. Derivation from ;Raoult's law	
	and Henry's law. DuhemMargules equation. Theory of fractional distillation.	
	Azeotropes- HCl- water and ethanol-water system.	
	Partially miscible liquids- phenol-water, triethylamine-water and nicotine-	
	water systems. Lower and upper CSTs- effect of impurities on CST.	

	Completely immiscible liquids- principle and applications of steam	
	distillation. Nernst distribution law, derivation.	
	Dilute solutions- colligative properties, relative lowering of vapour pressure,	
	omosis, law of osmotic pressure, derivation of elevation of boiling point and	
	depression in freezing point.	
	Determination of molecular masses using colligative properties. Abnormal	
	molecular masses, molecular dissociation- degree of dissociation- molecular	
	association.	
N/	HAME V DUAGE CHANCES	10
V	UNIT V PHASE CHANGES	18
	Definition of terms in the phase rule- derivation and application to one	
	component system- water and sulphur- super cooling, sublimation.	
	Two- component systems- solid liquid equilibria, simple eutectic (lead-silver,	
	Bi-Cd), desilverisation of lead.	
	Compound formation with congruent melting point (Mg-Zn) and incongruent	
	melting point (Na-K).	
	Solid solutions-(Ag-Au)- fractional crystallization, freezing mixtures- FeCl ₃ -	
	H ₂ O system, CuSO ₄ -H ₂ O system.	
VI	Calculation of Absolute Entropies	-
	I	

- 1. Raman, K., Group theory and its application to Chemistry, New Delhi: Tata McGraw-Hill. (1990).
- 2. Puri B.R., Sharma L.R. and PathaniaM.S., Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin Chand and Co. (2013).

Reference Books:

- 1. Gurdeep Chatwal R, Photochemistry, Good publishing House.
- 2. Samuel Glasstone, Thermodynamics for Chemists (3rd printing), East- West Edn. (1974).
- 3. Glasstone S. and Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co Ltd.
- 4. Atkins P.W., Physical chemistry, (5th edition), Oxford University press. (1994).
- 5. Sangaranarayanan, M.V., Mahadevan, V., Text Book of Physical Chemistry, 2nd Edition,

Hyderabad, Universities Press, (India) 2011.

Web- Resources:

http://www.lib.utexas.edu/thermodex

http://www.chemistryguide.org

Course Outcomes:

On completion of the course the learner will be able

CO 1: Learn about Photochemistry

CO 2: Predict the symmetry elements and symmetry operations

CO 3: Apply the concept of Second law ofthermodynamics

CO 4: Know the partial molarquantities.

CO 5: Recognize the component system using phaserule.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

СО/РО		РО					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	M	S	S	S	S	M	S	S	S	S
CO2	S	S	S	M	M	S	S	M	S	S	S	S	S
CO3	S	S	S	M	S	S	S	S	S	W	S	S	S
CO4	S	S	S	S	S	S	S	S	M	M	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	M	M

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-V / Core Practical-III (PRACTICAL)	PHYSICAL CHEMIISTRY (P)	Course Code: QUJY
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives:

- Students shall learn the fundamentals of various physical experiments.
- Students shall understand the method of determination of critical solution temperature, transition temperature and rate constant.
- Students acquire knowledge and skills of drawing graph and handling of some precision instruments.

List of Experiments:

- 1. Critical Solution Temperature
- 2. Effect of impurity on Critical Solution Temperature
- 3. Transition Temperature
- 4. Rast Method
- 5. Phase Diagram (Simple eutectic system)
- 6. Kinetics of Ester Hydrolysis
- 7. Partition Co-efficient of iodine between water and carbon tetrachloride.
- 8. Conductometric Acid-Base Titration
- 9. Potentiometic Redox Titration
- 10. Determination of cell constant

Venkateswaran V, Veeraswamy R, Kulandaivelu A.R, "Basic Principles of Practical Chemistry", (2nd edition), Sultan Chand & Sons, New Delhi (1997).

Reference Books:

- 1. D.P. Shoemaker, C.W.Garland&J.W.Nibler, "Experiments in Physical Chemistry" 5th edition, McGraw Hill, 1989.
- 2.V.D.Athawala&P.Mathur, "Experimental Physical Chemistry", New age International publisher, 2001.
- 3. Findlay.A, "Practical Physical Chemistry", 7th edition, London, Longman, 1959.
- 4. Ahluwalia V.K,Dingra.S&Gulati.A, "College Practical Chemistry", Orient Longman Pvt Ltd., Hyderabad, 2005.

Web- Resources:

http://www.vlab.co.in/index.php

Course Outcomes:

On completion of the course the learner will be able

- CO 1: To understand the method of determination of critical solution temperature, transition temperature and rate constant.
- CO 2: To learn the fundamentals of conductometric titration

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		PO					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S

- S Strongly Correlated
- M Moderately Correlated
- W -Weakly Correlated
- N No Correlation

Semester-V /	ANALYTICAL CHEMISTRY	Course Code:- QUE3
Major Based Elective – I		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students shall learn the storage and handling of various chemicals and procedures. Students shall demonstrate competence in collecting and interpreting data frow knowledge on analytical techniques. Students know the separation and purification technique of solvents. Students learn about thermo gravimetric analysis, differential thermal analytical electrochemistry and its applications. Students learn about colorimetric analysis, coulometry analysis and its applications. 	om their
UNIT	CONTENT	HOURS
I	LABORATORY HYGIENE & FIRST AID Laboratory Hygiene and safety:Storage and handling of corrosive, flammable, explosive, toxic, carcinogenic and poisonous chemicals. Simple first aid procedure from accident:Acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning, inhalation of gases, cut by glasses and heat burns.	15
II		

III	SEPARATION & PURIFICATION TECHNIQUE	15			
	General principles involved in the separation of precipitates. Solvent				
	extraction.				
	Chromatography: Principles involved in adsorption, partition and ion				
	exchange, paper, thin layer, column, Electrophoresis applications. Desiccants,				
	vacuum drying, distillation, fractional distillation, steam distillation, azotropic				
	distillation, crystallization and sublimation – principles and techniques.				
IV	THERMO ANALYTICAL METHODS	15			
	&ANALYTICAL ELECTROCHEMISTRY				
	Thermo analytical Methods:Principles involved in TGA and DTA -				
	instrumentation. Characteristics of TGA (CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O) and DTA				
	curves (CaC ₂ O ₄ .H ₂ O). Factors affecting TGA and DTA curves.Thermometric				
	titration of HCl Vs NaOH				
	Analytical Electrochemistry:Redox potential – measurement and applications.				
	Interpretation of chemical behavior. Electrolytic separations. Principles of				
	Electrodeposition. Electro gravimetric (estimation of Cu and Ag).				
V	COLORIMETRIC ANALYSIS	15			
	Colorimetric analysis:Laws of colorimetry – instrumentation. Nessler's				
	and photoelectric colorimetric method- operation and application. Estimation of				
	Ni, Cu and Fe.Techniques in kinetics:Principles and techniques used to follow the				
	kinetics of ordinary and fast- photochemical reactions.				

- 1..R.Gopalan, P.S. Subramanian, and K. Rengarajan "Elements of Analytical Chemistry", 2^{nd} edition, Sultan chand&Co.,
- 2. Vogel.A" Text book of Quantitative Inorganic analysis", 4th edition, English language book society

Reference Books:

- 1. B.K. Sharma, "Instrumental methods of chemical analysis", Goel Publishing House, Merrut (1997).
- 2. Gurdeep Chatwal and Sham Anand, "Instrumental methods of chemical analysis" Himalaya publishing house (2005).
- 3. D.A. Skoog and D.M.West, "Fundamentals of analytical chemistry", 7th edition, Hartcourt College Publishers.
- 4. R.A. Day and A.L. Underwood Quantitative analysis.
- 5. Mendham J, Denny R.C., Barnes J.D., Thomas M, "Vogel's Text book of quantitative chemical analysis", 6th edition, Pearson education.

Web- Resources:

http://www.chemexper.com

Course Outcomes:

On completion of the course the learner will be able

- CO 1: Aware of Laboratory hygiene and safety.
- CO 2: Predict the data analysis in analytical techniques
- CO 3: Learn about separation and purification techniques
- CO 4: Recognize the thermo analytical methods such as TGA,DTA and analytical electrochemistry.
- CO 5: Understand the colorimetric analysis and techniques in kinetics.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO	PO				PSO								
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	M	S	S	S	S	S	M	W	S	W	S
CO2	S	S	S	M	S	S	S	S	S	W	S	S	S
CO3	S	S	S	S	S	S	S	S	M	S	S	S	S
CO4	S	S	S	M	S	S	S	S	M	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-V /	APPLIED CHEMISTRY	Course Code: QUS2
Skill Based Elective – II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students learn about types and hardness techniques of water. Students learn how to determine TDS,COD and BOD. Students understand about the application of Leather Chemistry. Students shall know about the physiochemical properties of milk. Students understand about the constituent of diary products. 	
UNIT	CONTENT	HOURS
I	WATER CHEMISTRY I Water – types of water - soft and hard water – hardness, degree of hardness - Reverse osmosis and ion exchange methods – principles and techniques.	6
II	WATER CHEMISTRY II Water Analysis - Determination of TDS, Total hardness by EDTA, BOD and COD.	6
III	LEATHER CHEMISTRY Introduction, chief process used in leather manufacture, structure of hide and skin, leather processing – process before tannage – tanning process – vegetables tanning and chrome tanning.	6
IV	DIARY CHEMISTRY I Milk – Definition, physiochemical properties of milk, constituents of milk, chemical change taking place in milk - boiling, pasteurization,	6

	sterilization and homogenization.	
V	DIARY CHEMISTRY II	6
	Definition of creams, butter, ghee and ice creams. Milk powder -	
	definition, need for making Powder. Principles involved in drying.	

- 1.B.K.Sharma, Industrial Chemistry, 13th edition, Goel Publishing House, Reprint 2008.
- 2.Mp Mathur, Datta Roy D, Dinakar P, "Text book of Diary Chemistry", Indian council of Agricultural Research, New Delhi.

Reference Books:

1.Dilip Kumar Das, Introductory Soil Science, 1st Edition, Kalyani Publishers, Reprint 2002.

Web- Resources:

https://www.chemistryguide.org/

http://chemcollective.org/home

Course Outcomes:

- CO 1: Develop an understanding about type of water.
- CO 2: Experience in water analysis such as TDS, Total hardness, BOD and COD
- CO 3: Expertise in Leather manufacture and processing.
- CO 4: Learn about constituent physical and chemical properties of milk.
- CO 5: Skills in preparation of dairy products such as butter, ghee, ice-cream.

CO/PO		РО				PSO							
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-V /	POLYMER CHEMISTRY	Course Code: QUS3
Skill Based Elective – III		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students learn the chemistry of polymers. Students learn about Polymer structure, properties and methods weight determination of polymers. Students shall know the kinetics of polymers. Students gain knowledge about the natural and synthetic polymers. Students learn the constituents and importance of Plastics and Res 	s.
UNIT	CONTENT	HOURS
I	Introduction to polymers and Macro molecules. Molecular forces and Chemical bonding in polymers. General methods of preparation of polymers.	6
II	MOLECULAR WEIGHT OF POLYMERS Polymer structure - Linear, branched and cross linked polymers Stereo chemistry of polymers - Isotactic, sydiotatic and Atactic. Properties of Polymers. Molecular weight of Polymers - Number average molecular weight and weight average molecular weight. Viscosity and molecular weight. Osmometry.	6
III	UNIT III KINETICS Co polymerization - Definitions -homo and copolymers, Block copolymers and graft coplymers. Kinetics of polymerization -	6

	Kinetics of free radical polymerization kinetics of cationic polymerization. Mean kinetic chain length. Degree of polymerization. Inhibition and retardation. Chain transfer.	
IV	NATURAL & SYNTHETIC POLYMER Natural and synthetic rubbers, constitution of natural rubber. Thiocol, Polyurethane and silicone rubbers. Thermocole polymers related to natural rubber – Chlorinated rubber, oxidized rubber, cyclised rubber and ebonite. Acrylic polymers – Polymers of acrylic acid, methacrylic acid, and poly acrylates.	6
V	PLASTICS & RESINS Plastics and Resins - Definitions, Thermoplastic and thermo setting resins. Constituents of plastics fillers, dyes, pigments, plasticizers, lubricants and catalysts. Important thermoplastic resins acrylics, polyvinyl and cellulose derivatives. Important thermosetting resins – Phenolic resins, amino resins, epoxy resins, alkyd resins and silicone resins.	6

- 1. V.R.Gowarikar, N.V.Viswanathan "Polymer science", Wiley Eastern Ltd., New Delhi, 1978.
- 2. M.G.Arora, M.Singh and M.S.Yadav "Polymer Chemistry" 2nd Revised edition, Anmol Publications Private Ltd., New Delhi, 1989.

Reference Books:

- 1. F.W.Bilmeyer, "Text book of Polymer Science", Jr.John Wiley and Sons, 1984.
- 2. B.K.Sharma "Polymer Chemistry", Goel Publishing House, Meerut, 1989.

Web Resources:

https:// www.chemistryguide.org/ http://chemcollective.org/home

Course Outcomes:

On completion of the course the learner will be able

CO 1: To help students explore about polymers and macromolecules.

CO 2: To assess the molecular weight of polymers, structure and its stereochemistry.

CO 3: To recognize the kinetics of polymerization.

CO 4: To distinguish the natural and synthetic polymer.

CO 5: How to make plastics and resins.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		РО					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-VI /	ORGANIC CHEMISTRY II	Course Code:- QUK
Core Course-VIII		
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students learn the Chemistry of Sugars. Students learn the Chemistry of Amino acids, Nucleic acids and Vitamins. Students study the Chemistry of Alkaloid and Terpenoid. Students learn the molecular rearrangement and its mechanism. Students learn the basic concept of UV-Visible, IR and NMR spectroscopy 	
UNIT	CONTENT	HOURS
I	CHEMISTRY OF CARBOHYDRATES Carbohydrate- classification, properties of mono saccharides (glucose and fructose), structure and configuration of mono saccharides, interconversion. Ascending and descending series, muta rotation, epimerization- cyclic structure- determination of size of sugar rings. Disaccharides- sucrose, maltose- structure elucidation- polysaccharide- starch and cellulose (elementary treatment).	18
II	CHEMISTRY OF PROTEINS AND VITAMINS Amino acids- Zwitter ion- isoelectric point — general methods of preparation and reactions of amino acids. Peptides- Peptide li;nkages-proteins- classification of proteins. Structure of proteins- primary structure- end group analysis- Edman method-secondary structure- tertiary structure- denaturation- colour reactions of proteins. Nucleic acids- elementary treatment of DNA and RNA. Vitamins-classification, structure and biological importance of vitamins	18

	A,B_1,B_2,B_6 , B_{12} and C .	
III	CHEMISTRY OF ALKALOIDS AND TERPENOIDS Chemistry of natural products- alkaloids- classification, isolation-methods for synthesis of coiine, piperine, nicotine and quinine. Terpenoids- classification- isoprene, special isoprene rule, methods for synthesis of citral, limonene, menthol, camphor.	18
IV	MOLECULAR REARRANGEMENTS Molecular rearrangements- types of rearrangement (nucleophilic and electrophilic)- mechanism with evidence for the following re-arrangements: pinacol-pinacolone. Benzil-benzilic acid, Benzidine, Claisen, Fries, Hofmann. Curtius, Lossen, Beckmann and dienone- phenol rearrangements.	18
V	UV - VIS spectroscopy - types of electronic transitions — Instrumentation- solvent effects on λ max - Woodward - Fieser rules for calculation of λ max : dienes only — bathochromic shift and hypsochromicshift. IR spectroscopy - number and types of fundamental vibrations — selection rules- modes of vibrations and their energies. Instrumentation - position of IR absorption frequencies for functional groups like aldehyde, ketone, alcohol, acid, amine andamide. NMR spectroscopy-principle-chemical shift-factors affecting the chemical shift- inductive effect and hydrogen bonding - TMS, delta scales, splitting of signals - spin-spin coupling, NMR spectrum of EtOH n -propyl bromide and isopropyl bromide.	
VI	Problems based on combined spectroscopic technique	-

- 1.Bahl B.S. and Bahl A., "Advanced Organic Chemistry", 12th edition, Sultan Chand & Co., (2010)
- 2. Y.R.Sharma, "Elementary Organic Spectroscopy", 5th edition, S.Chand& Company., (2013).

Reference Books:

- 1. Finar I.L., "Organic Chemistry", Vol 1&2,6th edition,Addison Wesley Longman Ltd. (1996).
- 2. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. "Organic Chemistry", 7th edition, Pearson (India)., (2011)
- 3. Pine S.H., "Organic Chemistry",5th edition,McGraw Hill International Book Company (1987)
- 4. William Kemp, "Organic Spectroscopy", 3rd edition, ELBS.
- 5. Silverstein, R. M, Webster, F. M, "Spectroscopy identification of Organic compounds", 7th edition, CRC Press, (2015)

Web- Resources:

http://organicdivision.org/links.html

http://www.chemistryguide.org/

http://chemcollective.org/home

Course Outcomes:

- CO 1: The classification, properties, structure and configuration of mono, di and polysaccharides.
- CO 2: The chemistry of proteins and vitamins.
- CO 3: The importance of alkaloids and terpenoids.
- CO 4: Predicting the molecular rearrangements with its types and mechanism.
- CO 5: The fundamental principles of UV-Vis, IR and NMR spectroscopy.

CO/PO		PO						PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S	S	S	S
CO5	S	S	S	S	S	S	S	S	W	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-VI / Core Course-IX	PHYSICAL CHEMISTRY II	Course Code: QUL
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create	
Course Objectives	 Students learn the basics of electrochemistry and they une practical use of electricity and their laws. Students understand the nature of electrolytes and their theoconcept of emf and its application. Students learn the concept of electrochemical cell and its applications the concept of ionic mobility and its practical applications. Students learn about types and mechanism of catalysis and reactions. Students understand the effect of radiation on humans and the basics of spectroscopy. 	ories and the lications and d absorption
UNIT	CONTENT	HOURS
I	ELECTRICAL CONDUCTANCE Conductance in metal and in electrolytic solution- specific conductance and equivalent conductance. Arrhenius theory of electrolytic dissociation and its limitation. Weak and strong electrolyte according to Arrhenius theory. Ostwald's dilution law- Derivation, applications and limitation. Effect of dilution on equivalent conductance and specific conductance. Kohlrausch's law and its applications. The	18

	elementary treatment of the Debye-Huckel- Onsagar equations	
	for strong electrolytes- evidence for ionic atmosphere.	
	Transport number and Hittorf's rule. Determination of transport	
	number by Hittrof's method and moving boundary method.	
	Application of conductance measurements-determination of	
	degree of dissociation of weak electrolytes-determination of	
	solubility product of a sparingly soluble salt, common ion effect,	
	conductometric titrations.	
II	ELECTROCHEMICAL CELLS	18
	Galvanic cells- reversible and irreversible cells.	
	Conventional representation of electrochemical cells.	
	Electromotive force of a cell and its measurement- computation	
	of E.M.F - calculation of thermodynamic quantities of cell	
	reactions (G,H,S and K)	
	Types of reversible electrons-gas/metal ion-metal/metal ion,	
	metal/soluble salt/anion and redox electrodes, electrode reactions.	
	Nernst equation-derivation of cell E.M.F and single electrode	
	potential – standard hydrogen electrode-reference electrodes-	
	standard electrode potentials-sign convention – electrochemical	
	series and its significance.	
	Potentiometric titrations-Acid –Base titrations-Oxidation-	
	reduction(Redox)titrations- Precipitation titrations. Corrosion-	
	general and electrochemical theory- passivity- prevention of	
	corrosion.	
III	CATALYSIS AND SURFACE PHENOMENA	18
	Catalyst-Definition and Characteristics-Types of catalysis-	
	Homogeneous and heterogeneous, induced, auto, positive and	
	negative catalysis, catalytic poisons and catalytic promoters.	
	Enzyme catalysis- Michaelis- menten equation and Michaelis -	
	menten law.	
	Adsorption-types-chemical and physical, characteristics of	
	adsorption theory.	

	Different types of isotherms- Freundlich and Langmuir adsorption isotherms.	
IV	Electromagnetic spectrum- the region of various types of spectra. Microwave spectroscopy- rotational spectra of diatomic molecules treated as rigid rotator, condition for a molecule to be active in microwave region. Rotational constants (B) and selection rules for rotational transition. Frequency of spectral lines, calculation of inter nuclear distance in diatomic molecules. Infrared spectroscopy- vibrations of diatomic molecules-harmonic oscillators, zero point energy, dissociation energy and force constant, condition for molecule to be active in the IR region, selection rules for vibrational transition, fundamental bands, overtones and hot bands. UV-Visible spectroscopy-conditions- Franck-Condon principle-pre dissociation- applications.	18
V	SPECTROSCOPY II Raman spectroscopy- Rayleigh scattering and Raman scattering. Stokes and anti stokes lines in Raman spectra, Raman frequency, quantum theory of Raman effect, conditions for a molecule to be Raman active. Comparison of Raman an IR spectra- structural determination from Raman and IR spectroscopy, rule of mutal exclusion. NMR spectroscopy- nuclear spin and conditions for a molecule to give rise to NMR spectrum- theory of NMR spectra, number of NMR signals, equivalent and non- equivalent protons.	18
VI	Commercial Cell: Dry cell, Lead Storage, Alkali and H ₂ -O ₂ fuel cells.	-

- 1.Puri B.R., Sharma L.R. and Pathania M.S. Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin chand and Co. (2013)
- 2.Colin Bannwell N and Elaine Mc Cash M, Fundamentals of molecular spectroscopy, 4th edition, Mc Graw hill publishing company limited.

Reference Books:

- 1. Bahl B.S., Arun Bahl and Tuli G.D. ."Essentials of Physical Chemistry", New Delhi: Sultan Chand and Sons., (2012)
- 2. Moore W. J. "Physical chemistry", 5th Edition, Orient Longman Ltd., (1972).
- 3. Glasstone S. and Lewis D., "Elements of Physical Chemistry", London, Mac Millan & Co Ltd.
- 4. Y.R.Sharma, "Elementary Organic Spectroscopy", 5th edition, S.Chand& Company., (2013).
- 5. Russell S. Drago,, "Physical methods in Inorganic chemistry", East-west student edition., (1978).

Web- Resources:

http://www.chemistryguide.org/ http://chemcollective.org/home

Course Outcomes:

- CO 1: Knowledge of electrical conductance with its applications.
- CO 2: Learn depth about electrochemical cells and electrodes.
- CO 3: The applications of catalysis and isotherms
- CO 4: The use of UV spectroscopy and applications of IR and UV in chemical compounds.
- CO 5: The fundamental application of Raman and NMR spectroscopy.

CO/PO		PO						PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	M	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	M	S	S	S	S
CO4	S	S	S	M	S	S	S	S	M	S	S	S	S
CO5	S	S	S	M	S	S	S	S	M	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-VI /	GRAVIMETRIC AND ORGANIC	Course Code: QUMY
Core Practical IV	ANALYSIS (P)	
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives:

- Students learn the techniques of gravimetric analysis.
- Students learn the methods of preparing organic compounds.
- Students learn the determination of physical constants of compounds.
- Students learn the techniques of organic qualitative analysis
- Students learn the derivatives of organic qualitative analysis.

GRAVIMETRIC ANALYSIS:

- 1. Estimation of Lead as lead chromate.
- 2. Estimation of Barium as barium chromate.
- 3. Estimation of Nickel as Nickel DMG complex.
- 4. Estimation Calcium as calcium oxalate monohydrate
- 5. Estimation of Barium as barium sulphate.

ONLY FOR DEMONSTRATION:

- 1. Estimation of Copper as copper (I) thiocyanate
- 2. Estimation of Magnesium as magnesium oxinate
- 3. Estimation of Iron as Iron (III) oxide.

ORGANIC QUALITATIVE ANALYSIS AND ORGANIC PREPARATION:

Analysis of Simple Organic compounds

- (a) Characterization of functional groups
- (b) Confirmation by preparation of solid derivatives / characteristic color reactions.

Note: Mono –functional compounds are given for analysis. In case of bi-functional compounds, students are required to report any one of the functional groups.

ORGANIC PREPARATION: (ANY FOUR)

Preparation of Organic Compounds involving the following Chemical Conversions.

1.Oxidation 2.Reduction 3. Hydrolysis 4. Nitration 5. Bromination 6. Diazotization

7. Osazone formation

DETERMINATION OF PHYSICAL CONSTANTS

• Determination of boiling /melting points by semi micro method.

Text Book:

- 1. Venkateswaran V, Veeraswamy R., Kulandaivel A.R., "Basic Principles of PracticalChemistry", 2nd edition, Sultan chand& sons, (1997)
- 2. Furniss, B.S., et al., "Vogel's textbook of Practical Organic Chemistry", 7th edition, ELBS, London (1984).

Web Resources:

http://www.vlab.co.in/index.php

Course Outcomes:

On completion of the course the learner will be able

CO 1: To know the technique of organic qualitative analysis.

CO 2: To learn the determination of Physical constants of organic compounds.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO			PO					PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W - Weakly Correlated

Semester-VI /	NUCLEAR, INDUSTRIAL	Course Code: QUE4
Major Based Elective II	CHEMISTRY AND METALLIC	
	STATE	
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

h		
Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate	
	K6-Create	
Course	Students learn about fundamental of Nuclear Chemistry.	
Objectives	Students will learn measurement and applications of radioactive isoto	opes.
	Students study composition and uses of fossil fuels, safety matched	es, paint and
	varnish.	
	• Students understand the various theories of metallic bonding, different semiconductors.	rent types of
	Students shall know the composition and uses of Inorganic po	olymers and
	silicates.	orymers and
UNIT	CONTENT	HOURS
UNIT I	CONTENT NUCLEAR CHEMISTRY I	HOURS 18
	NUCLEAR CHEMISTRY I	
	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces.	
	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces. Nuclear stability – o/p ratio, mass defect, binding energy, packing	
	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces. Nuclear stability – o/p ratio, mass defect, binding energy, packing fraction and magic numbers, shell and drop models.	
	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces. Nuclear stability – o/p ratio, mass defect, binding energy, packing fraction and magic numbers, shell and drop models. Isotopes – detection and separation. Isotopic constitution of elements	
	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces. Nuclear stability – o/p ratio, mass defect, binding energy, packing fraction and magic numbers, shell and drop models. Isotopes – detection and separation. Isotopic constitution of elements and whole number rule. Deviation of atomic weights from whole	
I	NUCLEAR CHEMISTRY I Introduction – composition of nucleus and nuclear forces. Nuclear stability – o/p ratio, mass defect, binding energy, packing fraction and magic numbers, shell and drop models. Isotopes – detection and separation. Isotopic constitution of elements and whole number rule. Deviation of atomic weights from whole numbers. Isobars, isotones and isomers.	18

	Half life and average life - Radioactive series, Geiger Nuttal rule.	
	Detection and measurements -Wilson cloud chamber & Geiger Muller	
	Counter.	
	Nuclear transformations use of projectiles nuclear reactions fission and	
	fusion. Nuclear reactors. Applications of radio isotopes - Medicine,	
	Agriculture, Industry & Carbon dating – Radio active waste disposal	
III	INDUSTRIAL CHEMISTRY	18
	Fossil fuels - varieties of coal and petroleum - petroleum	
	refineries in India. Gaseous fuels - natural, gobar, coal, water, semi	
	water and producer gases. Liquefied Petroleum Gases (LPG)	
	Safety matches - Introduction, Raw materials and manufacturing	
	methods.	
	Paints and varnishes- Definition, types and composition.	
IV	METALLIC STATE	18
	Metallic state – packing of atoms in metal (BCC,CCP,HCP).	
	Theories of metallic bonding- Electron gas Pauling and Band	
	theories. Structure of alloys substitutional and interstitial solid	
	solutions – humerothery ratios crystal defects.	
	Semi conductors – Extrinsic and Intrinsic – n-type and p-type	
	conductors. Structure and uses in electronic industry.	
V	INORGANIC POLYMERS & SILICATES	18
	Inorganic polymers – coordination polymers, metal alkyls,	
	phosphonitrilic polymers.	
	Silicates - Classification into discrete an ions, one, Two and three	
	dimensional structure with typical examples. composition, properties	
	and uses of beryl, asbestos, talc, mica, zeolites and ultramarines.	

- 1. R.D. Madan, "Modern Inorganic Chemistry", 2nd edition, S. Chand & Company Ltd., 2000.
- 2. P.L.Soni, 'Text Book of Inorganic Chemistry', 20th revised edition, Sultan Chand & Sons, 2000.

Reference Books:

- 1.Gilreath, 'Fundamental concepts of Inorganic Chemistry', 18th Printing, McGraw Hill International Book Company, 1985
- 2.S. Glasstone, 'Source book on Atomic Energy', East-West Press, 1967.
- 3. R.Gopalan, P.S. Subramanian and K. Rengarajan, 'Elements of Analytical Chemsitry', Sultan Chand & Sons, 2nd edition, 1991.
- 4. B. K. Sharma, "Industrial Chemistry", 13th edition, Goel Publishing House, Reprint 2008.
- 5. F.W.Bilmeyer, "Text book of Polymer Science", Jr.John Wiley and Sons, 1984.

Web Resources:

http://www.chemistryguide.org/ http://chemcollective.org/home

Course Outcomes:

- CO 1: Acquire knowledge of nuclear structure, stable and unstable atomic nuclei.
- CO 2: Know the fundamentals of radioactivity, isotopic chemistry, radiation chemistry and the applications of these in medicine, agriculture and industry.
- CO 3: Learn about the fossil fuels, safety matches, paints and varnishes.
- CO 4: Handle the semiconductors.
- CO 5: Gain a preliminary understanding of inorganic polymers.

CO/PO			РО			PSO							
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	M	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated

Semester-VI / Major Based Elective III	AGRICULTURAL CHEMISTRY	Course Code:- QUE5
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create • Students learn about the composition and properties of soil.	
Objectives	 Students understand the source and properties of Micronutrient fe 	rtilizer.
	• Students know the importance of Green manure.	
	• Students study about the pest management and its control.	
	Students know the chemistry of Fungicide, Herbicide and Acaricic	de.
UNIT	CONTENT	HOURS
I	COMPOSITION AND PROPERTIES OF SOIL	15
	Definition of soil – soil composition. Soil Physical properties	
	- soil separates and particle size distribution - soil texture and	
	structure. Bulk density, particle density, pore space, soil air, soil	
	temperature, soil water.	
	Soil chemical properties – soil colloids – Inorganic colloids – clay	
	minerals – amorphous – Ion exchange reactions – organic colloids	
	- soil organic matter - Decomposition - Humus formation -	
	significance on soil fertility, soil reaction.	
II	MICRONUTRIENT FERTILIZER	15
	Secondary and micronutrient fertilizers - complex and	
	mixed fertilizers - sources, manufacture, properties and reactions	
	in soils.	
	Preparation of slow release fertilizer – compatibility of fertilizers – fertilizer blending – preparation of different fertilizer mixtures.	

		1
III	GREEN MANURE	15
	Nutrient potential of different organic manures Agricultural,	
	industrial and urban wastes - preparation of enriched farm yard	
	manures - Zinc enriched organics.	
	Green manures – green leaf manure – bulky organic and	
	concentrated organic manures – compost –composting of coir pith;	
	sugarcane trash, leaf litters and farm wastes – oil cakes, bone meal,	
	fish meal, guano poultry manures - fertilizer use efficiency -	
	integrated nutrient management.	
IV	PEST MANAGEMENT & CONTROL	15
	Pesticides – formulations – emulsifiable concentrate, water	
	miscible liquids, wettable powders dusts, granules, classification of	
	pesticides - mode of action - characteristics - uses and safety	
	measures in the analysis and handling of pesticides.	
	Insecticides – plant products – Nicotine, pyrethrum, rotenone,	
	petroleumoils.Inorganic Pesticides – Arsenical fluorides, borates.	
	Organic pesticides – organ chlorine compounds – D.D.T, B.H.C.,	
	methoxychlor, chloredane, endosulfon. Organophosphorous	
	compounds dichlorevas, methyl carbamic acid derivatives –	
	carbaryl – structure and mode of action.	
V	FUNGICIDES,HERBICIDES& ACARICIDES	15
	Fungicides – inorganic – sulphur compounds – copper	
	compounds – Mercuric compounds, organic – dithiocarbamates –	
	Dithane .Boredeaux mixture.	
	Herbicides: Inorganic herbicides – Arsenical compounds Boron	
	compounds cyanamide – cyanides and thiocyanates, chlorates and	
	sulphamates. Organic herbicides - Nitro-compounds - chlorinated	
	compounds – 2,4D-Pyridine compounds – Triazine compounds –	
	Propionic acid derivatives – urea herbicides, alachlor.	
	Acaricides – Rodenticides – Attractance – Repellants – Fumigants	
	Defoliants.	
<u>_</u>		

- 1. N.C. Brady, The nature and properties of soils Eurasia publishing house, (P) Ltd. 9th Ed. 1984.
- 2. Colling G.H., Commercial Fertilizers McGraw publishing house., 1955

Reference Books:

- 1.Biswas, T.D. and Mukeherjee S.K. Text book of soil science1987.
- 2. A.J. Daji A. Text book of soil science Asia publishing house, Madras(1970).
- 3. Donahue, R.L. Miller, R.W. and shickluna, J.C. soils An introduction to soils and plant Growth Prentice Hall of India (P) Ltd., New Delhi1987..
- 4. Colling G.H., Commercial Fertilizers McGraw publishing house 1955.
- 5. Lakshmanan, "Agricultural Chemistry", VVPublishers.,

Web Resources:

http://www.chemistryguide.org/ http://chemcollective.org/home

Course Outcomes:

On completion of the course the learner will be able

- CO 1: Students acquire the basic knowledge of Composition, Physical and Chemical properties of soil.
- CO 2: Students able to understand the secondary and micronutrient fertilizer.
- CO 3: Students can accumulate skills about green manure.
- CO 4: Students should be able to apply the knowledge of Pest Management and control.
- CO 5: Students should know the preparation and applications of fungicides and herbicides.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes:

CO/PO		PO						PSO					
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W -Weakly Correlated